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Chaotic properties of a repeller strongly influence the transient properties of a system close to it, in particular
the correlations in the transient regime. In this paper results are presented for repellers of one-dimensional
maps having a fixed point whose Lyapunov exponent agrees with the escape rate from the repeller: It is proven
that the corresponding natural measure of the repeller is ad function at the origin. Eigenfunctions of the
Frobenius-Perron operator are computed. The correlation function is calculated near the situation of permanent
chaos and anomalous decay of the correlations is found. Scaling properties are given on the route from a weak
repeller to a nonrepeller. The analytic results are supported by numerical calculations.@S1063-651X~96!07806-
3#

PACS number~s!: 05.45.1b, 05.70.Fh

I. INTRODUCTION

It is well known that in the long time limitan attractor
reflects the properties of all systems in its basin of attraction.
This holds true for the ‘‘thermodynamic’’ properties and for
the correlations observed in these systems. On the other hand
a repeller@1,2# cannot influence the asymptotic properties of
trajectories. Even when starting close to the repeller the tra-
jectories will move away from it. Nevertheless the properties
of repellers are important during atransient time: A system
coming close to a repeller will remain there for some time
~the transient time! and during this time the repeller will
imprint its properties on the behavior of the system. The
transient time depends on how closely the system approaches
the repeller~if it is accidentallyon the repeller the transient
time is of course infinite but this case is not usual! and on the
escape rate@3# of the repeller. So for a weak repeller~i.e.,
one with a small escape rate! the transient time is long and
the correlations found during this time are determined intrin-
sically by the repeller. It is the aim of the present paper to
compute these correlations for a simple one-dimensional
~1D! discrete map and to demonstrate their universal proper-
ties.

To define a suitable correlation function we argue as fol-
lows: Imagine a weak repeller with an invariant measurer r
just before the transition to a nonrepeller state with a com-
pletely different invariant measurernr — an example for this
transition will be given in the present paper. In this situation
the measurernr will already be felt by the transients but will
not influence the trajectorieson the repeller. This emphasizes
the importance of taking into account a neighborhoodU of
the repeller and thus we need a measure of the neighborhood
U. To become more specific we will restrict ourselves to
discrete mapsf for which a Frobenius-Perron operatorL is
defined. Then we can find this measure by the following
procedure: We start with an arbitrary densityr init in U. The
change ofr init after each step of iteration is induced by the

discrete map and given byL. Repeated application ofL will
lead to a decrease of the density and to a change of its struc-
ture at the same time. Finally the densitynormalizedin U is
expected to converge toP, the density of theconditionally
invariant measure@4#, whereas the density itself is decreas-
ing after each iteration by a certain rate, thedecayrate:

LP5lcP~ lnlc is the decay rate!. ~1!

Therefore, we use the conditionally invariant measureP
when calculating averages:

^c1~ f
m!c2&5

*Umc1„f
m~x!…c2~x!P~x!dx

*UmP~x!dx
,

with

Um5 f2m~U !ùU

Exploiting the properties of the conditionally invariant mea-
sure and ofL this can be transformed into

^c1~ f
m!c2&5lc

2mE
U
c1~y!Lm@c2P#~y!dy. ~2!

The correlation function is obtained by the replacement

c1,2→c1,22^c1,2&.

^c1& is given by settingc2[1 in Eq. ~ 2!. Thus we get~we
can avoid here specifying the average ofc2)

c12~m!5lc
2mE

U
dy~c1~y!2^c1&!Lm@c2P#~y!,

~3!

^c1&5E
U
c1~x!P~x!dx.

The correlation function defined in this way depends obvi-
ously on the neighborhoodU. But in spite of the nonunique-*Permanent address.
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ness ofU this dependency is not particularly relevant since
all trajectories move away from the repeller exponentially
fast. Therefore the asympotics of all thec12(m) is the same
and different neighborhoods will affect only the corrections
to these asymptotics, not the asymptotics itself. This is not in
contrast to the statement that the correlation functionon the
repeller will be different fromc12(m) defined here.~The cor-
relation functionon the repeller was discussed by Csorda´s
@5#.! The former corresponds to taking the limitU→0 first
and then computing the correlations for largem. In contrast
the correlation functionc12 is computed for arbitrary large
m first and afterwardsU may be restricted to an arbitrary
small neighborhood of the repeller. This is an interchange of
two limits and we give an explicit example below for which
the result is different. The function defined in Eq.~3! can be
called naturallythe correlation function of transient chaos.

Conditionally invariant measures have been introduced
some time ago when discussing 1D maps having a repeller
@1#. In this paper we will look into the properties of a class of
1D maps defined implicitly on the interval@0,1#:

f ~x!5 f 0~x!2v„f ~x!…

~4!

v~x!5v~12x!, v~0!50, 21<v8~x!<1

and

f 0~x!5H 2Rgx for 0<x<1/2Rg

2Rg~12x! for 121/2Rg<x<1.
~5!

These maps represent a very general class of repellers@7#
and at the same time have simple inverse mappings and a
simple conditionally invariant measure: The inverse of the
lower and upper branch, respectively, are given by

f l
21~x!5

x1v~x!

2Rg
,

~6!

f u
21~x!512 f l~x!

and the conditionally invariant measure is obtained by in-
spection,

P~x!511v8~x! ~7!

with the eigenvalue

lc51/Rg ~8!

and an escape rate

k5 lnRg . ~9!

The general case will be discussed in a forthcoming paper.
Here we discuss only maps fulfilling the condition

v8~0!52v8~1!51. ~10!

This means that at the two end points of the window the
slope becomes infinite, cf. Eq.~ 6!. The properties of such
maps are very rich. In Sec. II we will prove analytically as
well as numerically that forRg.1 a repeller generated by

any of these maps always has a natural invariant measure
that is ad function at the origin.~This has been pointed out
already in@7#.! At Rg51 the system becomes intermittent
and nonrepelling characterized by two coexisting invariant
measures~one being ad function, the other being a smooth
measure, namely, the former conditionally invariant mea-
sure!. Thus there exists a first order phase transition at
Rg51 for these maps@6#. The appropriate control parameter
is

«5Rg21. ~11!

The first eigenfunction ofL with eigenvaluel0,lc turns
out to be the most important one. Its eigenvaluel0 is only by
an amountO(«2) smaller thanlc leading to a very slow
decay of correlations and a correlation lengthL}«22 ~in this
connectionlengthmeans always the number of iterations!.
This eigenfunction and its eigenvalue are computed in Sec.
III. In Sec. IV we approximate the other eigenvalues and
eigenfunctions by analytic expressions, compute the correla-
tion function c12(m) analytically, and investigate scaling
properties. We compare the analytic expressions with nu-
merical results and show that the agreement is very good
indeed. From the analytic formula we recognize in particular
the crossover lengthLcross at which the exponent of the
power law decay changes from 1 to 0. We find the anoma-
lous ratioLcross/L}«. The conclusion ends the paper.

II. THE NATURAL MEASURE OF THE REPELLER

The structure of the repeller will be determined by intro-
ducing the function

u~N!~x!5H lc
2N for 0< f N~x!<1 ~12!

0 otherwise ~13!

and its limit

u5 lim
N→`

u~N!. ~14!

We obtain for the natural invariant measure of the repeller in
theNth step@7–9#

r~N!~x!5u~N!~x!P~x! ~15!

and for the invariant measure

r~x!5 lim
N→`

r~N!. ~16!

The computation ofr(x) can be done numerically for
Rg@1 by directly applying this iteration scheme@7#. But we
are interested in the phase transitionRg→1 and in that limit
this scheme is prohibitive.

We can use an analytic method beginning with the obser-
vation that the natural measure of the repeller is related to the
first eigenfunction of the adjoint Frobenius-Perron operator
defined as
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L1g5g„f ~x!…F~x!,
~17!

F~x!5H 1 for 0<x<1/2Rg or 121/2Rg<x<1

0 otherwise.

The basic eigenfunction of the adjoint operator can be
obtained via the construction@we are allowed to start with
the function 1 since*0113P~x!dxÞ0!#

t~N!5lc
2NL1N1. ~18!

The first eigenfunction is the limit

t5 lim
N→`

t~N!. ~19!

~For Rg51 L1151, so in that case 1 is an eigenfunction
with eigenvaluelc51. We will see that this eigenvalue is
degenerate.! We realize at once thatt andu areidentical. On
the other hand, the first eigenfunction can be obtained by
inspection. It is

t~x!5d~x!1d~12x!, ~20!

since we can write

d„f ~x!…5
1

u f 8~0!u
d~x!1

1

u f 8~0!u
d~12x!

and because of Eqs.~10! and ~6!

d„12 f ~x!…5
1

u f 8„f21~1!…u
d„f21~1!2x…50.

Therefore, using Eqs.~7!, ~10!, ~15!, and~16!, the density of
the natural measure turns out to be ad function at the origin

r~x!5d~x! for Rg.1. ~21!

It was proven previously@7# that the natural measure pos-
sesses ad function contribution at the origin and it was sug-
gested — based on numerical results — that the prefactor
would be 1.

ApproachingRg51 on a different route, namely, that of
fully developed chaos@10,11#, the density of the natural
measure isP. Besides the smooth densityP there exists at
the phase transition point thed function, which is being an
eigenfunction of the Frobenius-Perron operator with the
same eigenvaluelc51. The coexistence of these two mea-
sures shows that the phase transition is of first order.

III. THE EIGENFUNCTION WITH SECOND LARGEST
EIGENVALUE

Having the first eigenfunction ofL1 we can compute the
first eigenfunction ofL with eigenvaluel0,lc in the fol-
lowing manner:~i! start with an arbitrary functionc (0); ~ii !
compute

p~x!5Lc~0!;

~iii ! project the contribution ofP(x) out and normalize

c~1!~x!5
p~x!2^tup&P~x!

ip2^tup&Pi ;

~iv! iterate this procedure. As a result, the first nontrivial
eigenfunctionc0 and its first eigenvaluel0 are obtained ful-
filling

Lc05l0c0 ~22!

In our case we have

^tup&5p~0! ~23!

and inserting this we find anumericalsolutionc0 that fulfills
the eigenvalue equation with a numerical error,10210. This
holds true at least in the range 1.000 01<Rg<10. @The small
error also provides numerical evidence that Eq.~23! is cor-
rect and that the measure of the repeller is indeed ad func-
tion.# Numerical results for the eigenfunctions are given in
Fig. 1. Here and throughout the paper the numerics were
done inserting

v~x!5x~12x!. ~24!

In Fig. 2 l0(Rg) is shown. We observe thatP(x) and
c0(x) are nearly degenerate for«→0, which lets us expect
that the first nontrivial eigenfunction is particularly important
and that, e.g., the correlation lengthL is determined by the
properties of the first nontrivial eigenvalue. Therefore ana-
lytic approximations are desirable and will be given next.

Because of thed function character of the natural measure
we expect the eigenfunctionscn(x) to be most important for
small arguments. But for small arguments the second branch
of the Frobenius-Perron operator being}cn@12 f 8(0)x# can
be neglected@10#:

cn~12y!5ln
21 1

uf8„f l
21~12y!…u

@cn„f l
21~12y!…

1cn„f u
21~12y!…#

but

1

u f 8„f l
21~1!…u

5
1

u f 8„f u
21~1!…u

50

and therefore

lim
y→0

cn~12y!50. ~25!

Then the eigenvalue equation can be approximated by a dif-
ferential equation@10# and with the definition

b5
2«

f 9~0!
~26!

one obtains the approximate solution

l0
~0!5lc1O~«2!, ~27!

c0
~0!~x!5

b2

~x1b!2
2
1

2
P~x!. ~28!
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@The second term has been added to fulfillc0
(0)(0)50.#

Whereas this is quite a good approximation for the eigen-
function as long as« is small ~cf. Fig. 3! the approximation
for the eigenvalue is too crude. To get a better approximation
we iterate

c0
~1!52RgLc0

~0!2const3P. ~29!

const is determined from the conditionc0
(1)(0)50. This

leads to

c0
~1!~x!5P~x!S b2

@ f l
21~x!1b#2

1
b2

@ f u
21~x!1b#2

2s D ,
~30!

s511
b2

~11b!2
.

We expectc0
(1) to be a very good approximation since it

fulfills Eq. ~ 25! as well and thus

c05 lim
N→`

1

l0
NLNc0

~1! . ~31!

A comparison betweenc0 andc0
(1) is shown in Fig. 4 and

the agreement is very good indeed. We compute the eigen-
valuel0

(1) from

FIG. 1. Eigenfunctionc0(x) with second largest eigenvaluel0 of the Frobenius-Perron operator. The eigenfunction is normalized, i.e.,
*0
1c051. Solid line:«50.01, dashed line:«50.1.

FIG. 2. Eigenvalue of the conditionally invariant measure,lc ~solid line!, and the second largest eigenvaluel0 ~dashed line!, as function
of «. They merge for«→0.
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l0
~1!5

*0
1Lc0

~1!

*0
1c0

~1! ~32!

The computation is done in the Appendix. The approxima-
tion used here is compared with exact numerical results; cf.
Fig. 5. The agreement betweenl0 and l0

(1) is again very
good.l0(Rg) depends onv; cf. Eq. ~ 4!. However, the lead-
ing term in an« expansionis universal:

l05lc@122«b#1O~«3!. ~33!

There is no degeneracy forfinite « but a near degeneracy
with the result that initial distributions steeply peaked at zero
will decay very slowly and the correlation length is

L}«22. ~34!

IV. THE CORRELATION FUNCTION

To compute the correlation function we need not only
c0 but all the other eigenfunctions of the Frobenius-Perron
operator as well. Proceeding as in an earlier paper@11#, we
get for the approximate eigenfunctions

fn
~0!~x!5

b~11b!n11xn

~x1b!n12 ,

~35!

ln
~0!5l0e

2«n.

This approximation is sufficient forn.0 sincefn(0)50 is
fulfilled and Eq.~25! is nearly fulfilled for small«. For large
« the higher eigenfunctions are not very relevant for the
computation of the correlation function anyway.

We assume here that theci are analytic in@0,1#. Expand-
ing @c22^c2&#P in the series of thefn we may write

Lm@c22^c2&#P5Lm(
n50

`

anfn

'l0
m(

n50

`

ane
2«mnfn1a0~Lm2l0

m!f0 .

The conjugation

FIG. 3. Comparison between the exact eigenfunctionc0(x)
~solid line! andc0

(0)(x), the simplest approximation in this paper
~dashed line!. The eigenfunctions are normalized.~a! «50.01, ~b!
«50.1.

FIG. 4. Comparison between the exact eigenfunctionc0(x)
~solid line! and the approximate onec0

(1)(x) ~dashed line!. The
eigenfunctions are normalized.~a! «50.1, ~b! «50.3.

FIG. 5. Comparison between the exact eigenvaluel0 ~solid line!
and the approximate onel0

(1) ~dashed line!.
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y5h~x!5
x

x1b
@11b# ~36!

transforms thefn just into powers. Therefore the the conju-
gation of( is a Taylor series and we obtain a closed expres-
sion for it. Furthermorea0 is given by

a05@c2~0!2^c2&#P~0!b~11b! ~37!

and we can use the fact thatc0
(1) is a good approximation for

the first nontrivial eigenfunction. Putting all this together we
find

Lmd2'l0
m 1

@~12l0
m!~a/«!x11#2

3d2Fl0
mS x

~12l0
m!~a/«!x11D G

1c2~0!l0
mFlc

l0
c0

~1!2c0
~0!G1lc

msP. ~38!

Let us assume from now on that@c1(0)2^c1&#Þ0 and
@c2(0)2^c2&#Þ0 ~this is the generic case!. Note that any
term }P(x) in Eq. ~38! is negligible since
*U@c12^c1&#P50. Furthermore it turns out that the second
term of Eq.~38! can be neglected@this term gives a relative
contribution O(«2)]. We take for U the whole interval
@0,1# deferring the discussion of smallerU to the end of the
section. The result is

c12~m!'
~l0 /lc!

m

~12l0
m!a/«

@c1~0!2^c1&#

3@c2~0!2^c2&#P~0!E
0

~12l0
m

!b21 1

~11y!2
.

~39!

We have checked this formula numerically by using Eq.~3!
and setting forci

c1~x!5c2~x!5H 1 if x,B

0 otherwise.
~40!

~We choose forc2 a step function because of its numerical
advantages. Of course the step function is not analytic. How-
ever, cutting the tail of its Fourier series we can construct an
analytic function being arbitrarily close to a step function.!
In Fig. 6 the ratioc12

numeric/c12
analytic is shown for various«

values.@For the analytic computation of the correlation func-
tion we use the asymptotic formula taking into account the

finite integration limit; i.e., we compute*
0
B(12l0

m)b21

1/
(11y)2.# One observes from the figure thatc12

numeric/c12
analytic

becomes const but the constant is less than 1. This has a
simple explanation: the approximate eigenfunctions have
been determined with high accuracy near 0 where they are
peaked and consequently the expansion coefficients ofc2 are
sufficiently accurate only if the functionc2 is strongly con-
centrated around 0. If this is not fulfilled one expects devia-
tions. These are not relevant concerning the independence of

the correlation function since all the tails ofc2 decay expo-
nentially fast under application of the Frobenius Perron op-
erator. Thus with increasingi Lic2 becomes strongly con-
centrated at 0 and its expansion into the approximate
eigenfucntion becomes very accurate but some weight has
been lost. As a result one gets the forementioned effect.

We get the following asymptotic behavior:

c12~m!→const3
1

m
~l0 /lc!

m
«m

12e2«m . ~41!

Let us analyze this result a little bit.l0 /lc is O(e
2«2); cf.

Eqs.~26! and ~33!. Therefore we can separate them values
into three regions;~i! m!«21: Here we have simple power
law decay}m21. This region includes«50 and the result is
in agreement with@11#. ~ii ! «21!m!«22: In this region the
correlation function remains approximately constant. The
crossover occurs atO(m)5«21, giving the crossover corre-
lation length

Lcross}«21. ~42!

FIG. 6. Comparison between the numerically calculated and the
analytically derived correlation functionc12(m). Shown is the ratio
R(m)5c12

numeric/c12
analytic as a function ofm. Note that there is no fit

parameter.B50.05; cf. Eq.~40!. ~a! «50.001, ~b! «50.01, ~c!
«50.1.
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~iii ! «22!m: In this region we find exponential decay
}e2m«2 defining the correlation length as

L}«22. ~43!

Obviously the system has two scales,LcrossandL, in con-
trast to the situation of fully developed chaos@11#. Further-
more the ratioL/Lcross}«21 and diverges for«→0. There-
fore the asymptotics of the correlation function can be
written in the formm213S(Lcross

21 m,L21m). ~See Ref.@12#
for an analogous situation in dynamical critical phenomena!.

The scaling depends crucially on the values of the
ci(0). This is not surprising since the natural measure of the
repeller is ad function at the origin. Trajectories staying for
a transient timem in the neighborhood of the repeller must
remain close to 0 ifm is large.

Up to now we have taken the interval@0,1# as the neigh-
borhood of the repeller. Now we estimate the corrections
when choosing a smaller neighborhood@0,ul #. From Eq.
~39! we recognize that the integral will change by
O(1/mul) for m,Lcross and by O(«ul) for m.Lcross.
These are small corrections not affecting the asymptotics as
long asul remains finite.

To obtain the correlation functionon the repeller one has
to take the limitul→0 first and then a completely different
result is found.@In fact we get 0 becausec1(x)2^c1&50 on
the natural measure of the repeller.#

V. CONCLUSION

We have derived correlation functionsc12(m) for the
transients of a repeller and computed them analytically as
well as numerically for a particular class of 1D maps. This
class is generated by a tent map having a window
«/(11«), cf. Eqs.~4! and~5! and the slope of these maps is
` at the two end points of the window. The intrinsic prop-
erties of this class are as follows.~i! A first order phase
transition at«50 from a repeller to a nonrepelling intermit-
tent state.~ii ! A natural measure, which is ad function at the
origin for arbitrary «.0. ~iii ! For small « the difference
between the leading eigenvaluelc and the next one,l0 , is
of order«2. This results in a correlation lengthL}«22. ~iv!
Correlation functions were computed analytically and nu-
merically. They decay with a power law}m21 below the
crossover lengthLcross}«21, remain approximately constant
in the rangeLcross,m,L. Beyond that they decay expo-
nentially but very slowly because of the large correlation
lengthL. We remind the reader that correlation functions of
transient chaos are to be defined in the neighborhood of the
repeller not on the repeller itself. These neighborhoods can-
not be defined uniquely. However, the asymptotics for large
m is independent of their definition.

ACKNOWLEDGMENTS

One of us~P.S.! would like to thank the Institute fu¨r Fes-
körperforschung for hospitality at KFA Juelich where part of
this work was done. One of us~H.L.! would like to thank the
Institute for Solid State Physics for hospitality at Eo¨tvös Uni-
versity where this work was finished. The authors thank A.
Csordás, G. Eilenberger, and L. Sasva´ri for useful discus-

sions. This work was supported by the Hungarian National
Scientific Research Foundation~OTKA! under Grant No.
T 017493 and partially by the German-Hungarian Scientific
and Technological Cooperation under project X231.2 and
62: Investigation of Classical and Quantum Chaos.

APPENDIX

We compute the expression

l0
~1!5

*0
1Lc0

~1!

*0
1c0

~1! . ~A1!

Because of Eq.~29! this is

l0
~1!5lc

122~Rg
2/s!*0

1L2f0

122~Rg /s!*0
1Lf0

, ~A2!

E
0

1

Lf05(
i51

2

2
1

l 2i1b
1

1

l 2i211b
,

l 15 f l
21~0!50,

l 25 f l
21~1!5

1

2Rg
,

l 3512 l 2 ,

l 451,

E
0

1

LLf05(
i51

4

2
1

l 2i1b
1

1

l 2i211b

l 15 f l
21~0!50,

l 25 f l
21S 1

2Rg
D5

1

4Rg
2 F112RgvS 1

2Rg
D G ,

l 35 f l
21S 12

1

2Rg
D5

1

2Rg
2

1

4Rg
2 F122RgvS 1

2Rg
D G ,

l 45 f l
21~1!5

1

2Rg
,

l 5512 l 4 ,

l 6512 l 3 ,

l 7512 l 2 ,

l 851.

Because of Eq.~ 31! this scheme can easily be extended
to arbitrary high order and has been used for precise numeri-
cal computations ofl0 .

For small« we get an exactuniversalexpansion up to
«2. To achieve that let us normalize the true eigenfunction
c0 such that
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E
0

1

c05E
0

1

c0
~1! . ~A3!

Let us assume furthermore

c0
~1!~x!2c0~x!5O~«2! if O~x!51. ~A4!

@This assumption is very plausible since the eigenvalue equa-
tion is fulfilled by c0

(1) up toO(«2).# Then we find

E
0

1

Lc05E
0

1

c02E
1/2Rg

121/2Rg
c0

5E
0

1

c0
~1!2E

1/2Rg

121/2Rg
c0

~1!1O~«3!

5E
0

1

Lc0
~1!1O~«3!52RgE

0

1

f02lcs1O~«3!

and thus

l0

lc
5
122~Rg

2/s!*0
1f0

122~Rg /s!*0
1f0

1O~«3!

or

l0

lc
5122«b1O~«3!. ~A5!
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